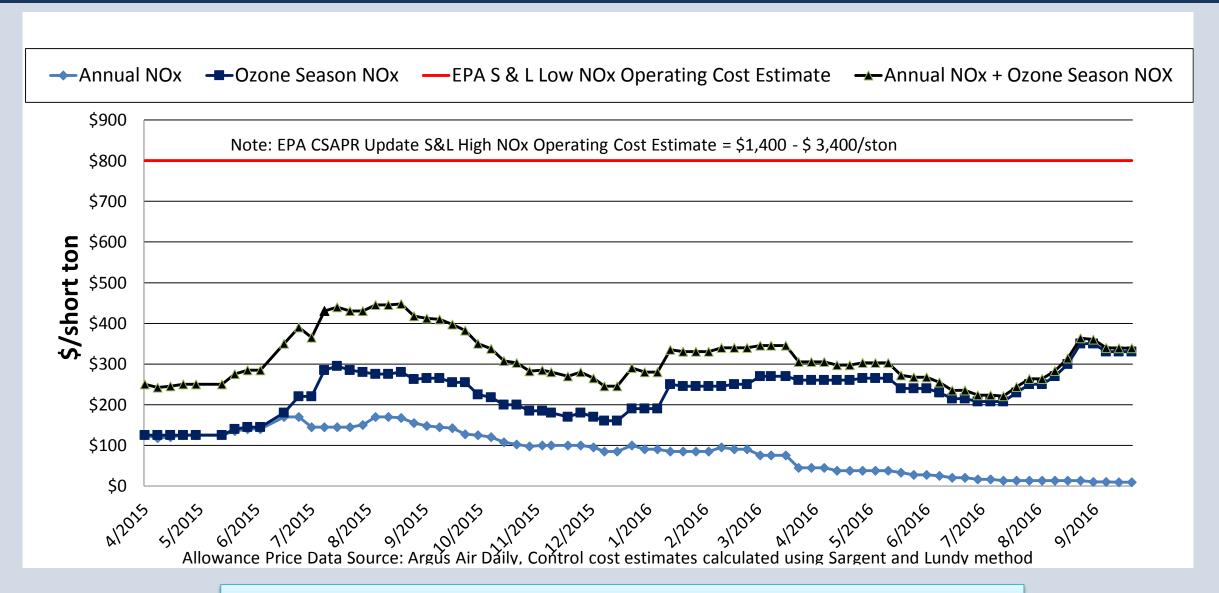


## Ali Mirzakhalili, P.E. Stationary and Area Source Committee




### **OZONE TRANSPORT COMMISSION**

### Top 25 2016 Ozone Season CSAPR State NO<sub>x</sub> Emitters

|   |       |                                |                    |                           |                 | 2017       |      |                 |      |
|---|-------|--------------------------------|--------------------|---------------------------|-----------------|------------|------|-----------------|------|
|   |       |                                |                    | Avg. NO <sub>x</sub> Rate | NO <sub>x</sub> | Allocation |      | Best Observed   |      |
| Ş | State | Facility Name                  | Facility - Unit ID | (lb/MMBtu)                | (tons)          | S          | SCR? | Rate (lb/mmBTU) | Year |
|   | LA    | Ninemile Point                 | 1403-4             | 0.394                     | 3,918           | 662        |      |                 |      |
|   | MO    | New Madrid Power Plant         | 2167-2             | 0.457                     | 3,832           | 695        | Yes  | 0.094           | 2009 |
|   | IN    | Rockport                       | 6166-MB2           | 0.195                     | 3,444           | 2,153      |      |                 |      |
|   | ОН    | W H Zimmer Generating Station  | 6019-1             | 0.199                     | 3,239           | 1,063      | Yes  | 0.056           | 2006 |
|   | MO    | New Madrid Power Plant         | 2167-1             | 0.709                     | 3,000           | 681        | Yes  | 0.090           | 2008 |
|   | LA    | Ninemile Point                 | 1403-5             | 0.346                     | 2,922           | 746        |      |                 |      |
|   | TX    | Oklaunion Power Station        | 127-1              | 0.302                     | 2,791           | 1,000      |      |                 |      |
|   | AR    | Independence                   | 6641-1             | 0.273                     | 2,686           | 980        |      |                 |      |
|   | IN    | Rockport                       | 6166-MB1           | 0.197                     | 2,578           | 2,229      |      |                 |      |
|   | AR    | Independence                   | 6641-2             | 0.247                     | 2,528           | 1,006      |      |                 |      |
|   | AR    | White Bluff                    | 6009-1             | 0.356                     | 2,460           | 1,084      |      |                 |      |
|   | WV    | Fort Martin Power Station      | 3943-1             | 0.293                     | 2,416           | 590        |      |                 |      |
|   | PA    | Brunner Island, LLC            | 3140-3             | 0.401                     | 2,414           | 452        |      |                 |      |
|   | TX    | Limestone                      | 298-LM2            | 0.198                     | 2,369           | 1,482      |      |                 |      |
|   | IN    | Cayuga                         | 1001-2             | 0.296                     | 2,320           | 723        |      |                 |      |
|   | PA    | Montour, LLC                   | 3149-1             | 0.379                     | 2,316           | 478        | Yes  | 0.044           | 2003 |
|   | MO    | Thomas Hill Energy Center      | 2168-MB3           | 0.233                     | 2,225           | 907        | Yes  | 0.054           | 2009 |
|   | PA    | Montour, LLC                   | 3149-2             | 0.233                     | 2,225           | 432        | Yes  | 0.047           | 2003 |
|   | IA    | Walter Scott Jr. Energy Center | 1082-3             | 0.373                     | 2,129           | 1,052      |      |                 |      |
|   | PA    | Cheswick                       | 8226-1             | 0.196                     | 2,128           | 310        | Yes  | 0.060           | 2003 |
|   | VA    | Clover Power Station           | 7213-1             | 0.356                     | 2,460           | 349        |      |                 |      |
|   | WV    | Harrison Power Station         | 3944-3             | 0.277                     | 2,052           | 696        | Yes  | 0.066           | 2005 |
|   | MO    | Thomas Hill Energy Center      | 2168-MB2           | 0.186                     | 2,033           | 397        | Yes  | 0.066           | 2009 |
|   | PA    | Bruce Mansfield                | 6094-3             | 0.185                     | 2,009           | 656        | Yes  | 0.074           | 2005 |
|   | WV    | Harrison Power Station         | 3944-2             | 0.241                     | 2,004           | 648        | Yes  | 0.067           | 2006 |


Many Units with SCR Continue to Operate above the Best Observed Rate (BOR)

### CSAPR Allowance Prices (4/17/15 - 10/7/16)



Still Cheaper to Buy Allowances than to Run Controls in most cases!

### Final CSAPR Update for 2008 Ozone NAAQS - 9/7/2016



### Final CSAPR Update for 2008 Ozone NAAQS (Cont'd)

Aligns compliance with July 2018 moderate attainment date for 2008 O<sub>3</sub> NAAQS

States can replace FIPs with approvable SIPs starting in 2018

One-time conversion of limited number of banked 2015 & 2016 NO<sub>x</sub> allowances

Conversion limits banked NO<sub>x</sub> allowances to 99,700 tons

This Update + other current changes in EGU regulations

- 20% or ~80,000 ton OS NO<sub>x</sub> reduction in eastern US in 2017 relative to 2015;
- Total economic benefits = \$880 million/year (in 2011\$) mostly from health care.

OTC > EPA: Update helps meet "Good Neighbor" obligations but still only a partial remedy

### High Electricity Demand Days (HEDD)

#### **Committee Charge:**

#### **Demand and Emergency Generator Information**

- Estimate emissions from demand response generation units used on HEDDs;
- Collaborate with other OTC Committees to analyze and better understand the air quality impacts;
- Recommend potential control strategies to the Commission.

#### **Workgroup Progress:**

- ✓ Ongoing Work: Data Acquisition and Analysis;
- ✓ Work Products Delivered: Draft Whitepaper; Draft Recommendations;

### **HEDD Workgroup Update**

#### Three separate but related HEDD analyses on:

- a) NO<sub>x</sub> contributions from peaking and other EGU types in OTR on HEDDs
- b) NO<sub>x</sub> reductions achieved if all these units controlled more effectively

#### 1. Smaller EGUs not in CAMD ( <25 MW)

 Annual emissions and locations known & in the modeling inventory but not temporally allocated properly

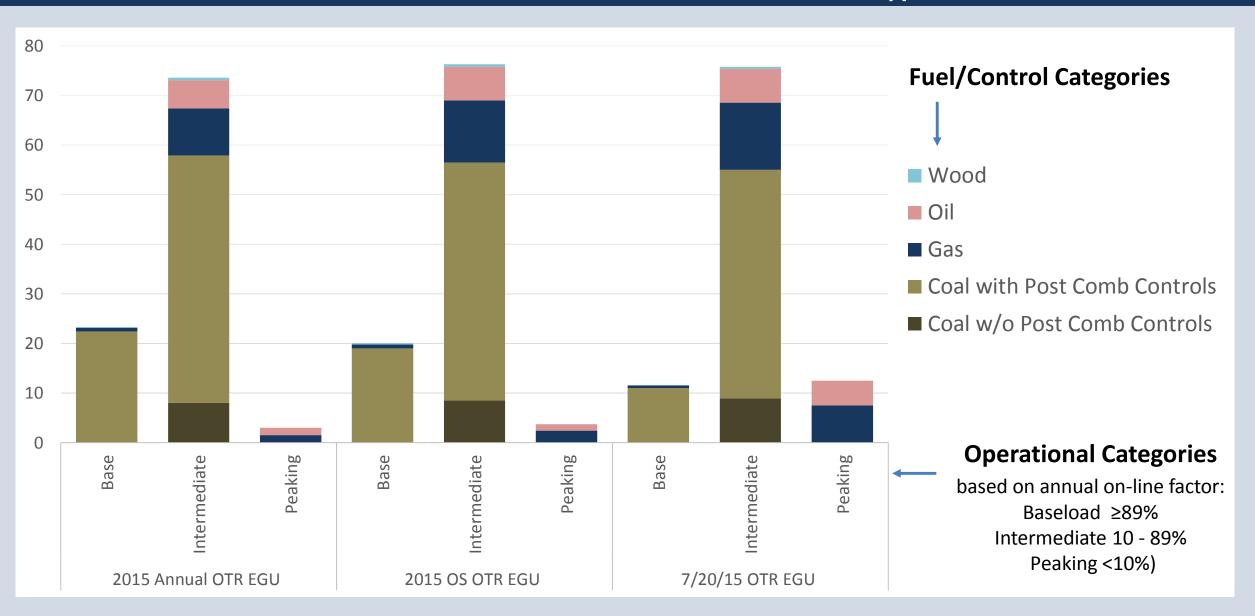
Completed Last Spring

#### 2. Back-up Generators (BUGs)

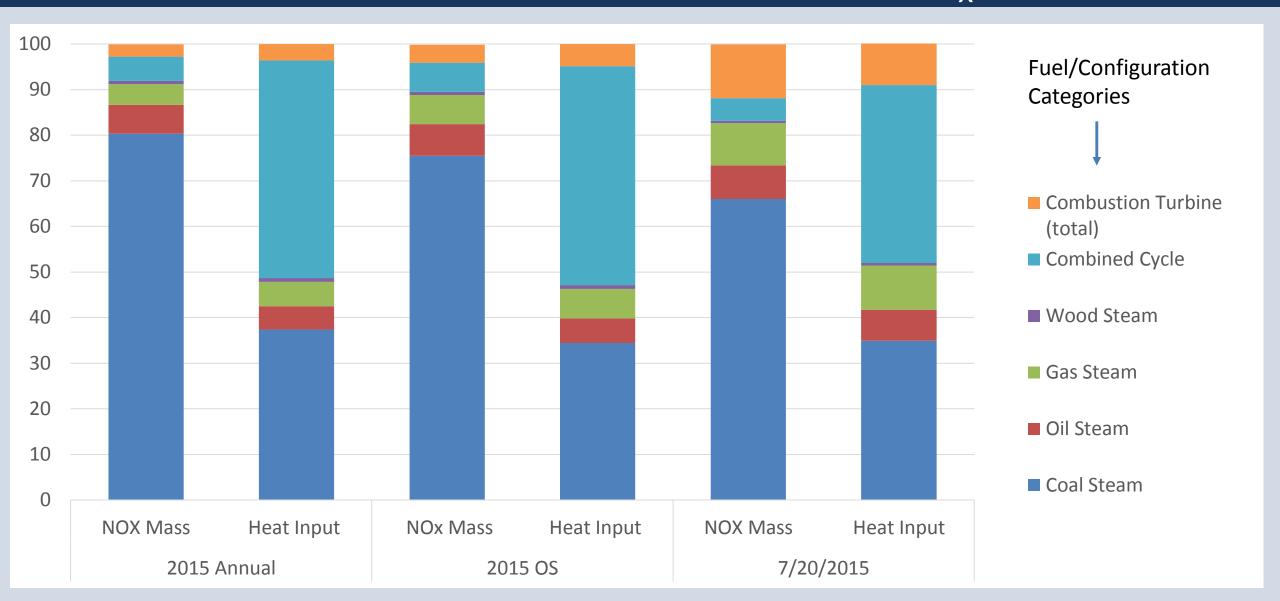
- Estimated total emissions for each ISO (ISO-NE, NY-ISO, PJM)
- Apportioned daily emissions to hours of day and to county level
- Assigned emissions to model episode days

#### 3. Peaking Units EGUs in CAMD (>25 MW)

Operate <10% over 3 years and <20% annually</li>


Hourly emissions and locations known & in modeling inventory








### EGU Category, % Contribution to NO<sub>x</sub> Mass, 2015



## EGU Category, % Contribution to NO<sub>x</sub>, 2015



### **EGU Control Optimization Analysis**

#### July 20, 2015 Episode Day in the OTR

#### **Combustion Turbines**

What if CTs listed in AMPD as having no  $NO_X$  controls used controls (e.g. water injection, low- $NO_X$  combustors) to meet "moderate RACT" levels of 42 ppm  $NO_X$  for gas and 88 ppm  $NO_X$  for oil?

• Estimated 21 ton  $NO_x$  reduction (34% reduction) for 7/20/15 in the OTR

#### **Coal Units**

What if all coal-fired EGUs with existing NOx controls operated at or near their best historic  $NO_X$  rates?

- NOx reduction potential for 7/20/15:
  - Coal units with SCR ~167 tons
  - Coal units with SNCR ~7 tons
- Adding controls to uncontrolled units provides an additional ~10 tons
- Total NO<sub>X</sub> reduction potential ~184 tons
  - ~32% of all fossil EGUs operating in OTR on 7/20/15

### Workgroup Summary & Conclusions

#### **Small EGUs**

- Improved temporal profiles  $\rightarrow$  7-fold increase in peak day NO<sub>x</sub> compared to default profiles
- Increase in predicted peak day O<sub>3</sub> concentrations of up to 5 ppb with improved profiles

#### **BUGs**

- $\sim$ 22 91 tons per "event" of additional NO<sub>X</sub> in the Northeast if BUGs responded to a widespread demand event in an unlimited manner
- Increase in predicted event day O<sub>3</sub> concentrations of 1 ppb
- Review of state regulations  $\rightarrow$  states are doing well in regulating these types of engines, i.e. true emergency use only, otherwise must be permitted and/or meet strict NO<sub>x</sub> limits

#### **Peaking Units**

- Peaking units contributed  $^{\sim}6$  34% of total OTR EGU NO<sub> $\chi$ </sub> mass for the episode days analyzed
- Estimated  $NO_x$  reduction potential in the OTR on 7/20/15:
  - 21 tons for combustion turbines
  - 184 tons for coal-fired EGUs

### Workgroup Recommendations

#### **Small EGUs**

✓ Incorporate improved temporal profiles into photochemical modeling platforms - Complete

#### **BUGs**

- Maintain and improve both:
  - State regulations pertaining to the use of stationary diesel engines
  - Enforcement efforts
- > Conduct outreach and education regarding the proper use of such engines

#### **Peaking Units**

- $\triangleright$  Where not done so already, adopt NO<sub>x</sub> RACT for gas and oil combustion turbines
- $\triangleright$  Pursue rulemaking or other mechanisms to ensure that all EGU types meet their best historic NO<sub>x</sub> rates at all times during the ozone season
- > Pursue HEDD-based rules (e.g. New Jersey's HEDD Rule)

### Public Comments on HEDD White Paper

#### **Environmental Energy Alliance of New York**

| Generally agreed with most of the analyses and recommendations                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Made suggestions for Modeling work  The workgroup recommends reviewing them for future analysis; some of them are already under consideration by the modeling committee, e.g. use of smaller grid sizes and refined emissions inventories, resolving complex land-sea interface transport, etc. |
| Offered its own analyses and observations on NY state's changing emissions landscape and the efficacy of source controls in reducing ozone transport                                                                                                                                            |
| Cautioned that RACT controls (for sources like combustion turbines) must pass the economic feasibility tests                                                                                                                                                                                    |

Final Draft of White Paper - Posted on OTC website, after addressing Stakeholder Comments

### RACT Workgroup

New NAAQS for  $O_3 = 70 \text{ ppb}$ 

RACT SIPs due

2014

2015

2016

2019

2022

OTC  $\rightarrow$  EPA:

RACT Statement of Principles

OTC RACT Resolution:

June 3, OTC → EPA:

Update RACT Guidance

new RACT requirements take effect

#### **Committee Charge:**

For each OTR state, develop list of emission rates and ranges determined to be RACT for significant  $NO_x$  and VOC source categories

<u>Draft NO<sub>X</sub> RACT Whitepaper</u>: First Draft posted on OTC website; Will forward final draft to EPA for use in RACT Guidance

Covers 8 (non-EGU) source categories,  $NO_X$  emissions limits, RACT Rules adopted by OTC states for 2008  $O_3$ 

**NAAQS** 

| Industrial/Commercial/Institutional Boilers | Stationary Gas (Combustion) Turbines  |  |
|---------------------------------------------|---------------------------------------|--|
| Municipal Waste Combustors                  | Stationary Reciprocating Engines      |  |
| Cement Kilns                                | Hot Mix Asphalt Production Facilities |  |
| Glass Furnaces                              | Natural Gas Pipeline Compressors      |  |

### **Technical Support Documents**

✓ Work Product from OTC stationary and mobile sources workgroups:

Draft NO<sub>x</sub> and VOC Technical Support Documents

#### We finalized the NO<sub>x</sub> and VOC TSDs now because:

- They have never been published for any of the 2009 model rules
- Some states need to cite these documents in their SIPs.
- The TSDs now include 2 CP updates, an AIM update, ICI boiler rule updates, previously missing solvent degreasing model rule, and two mobile source rules.
- Collating of the TSDs into a single package for easy reference.

**TSDs posted on OTC website** 

### Questions?



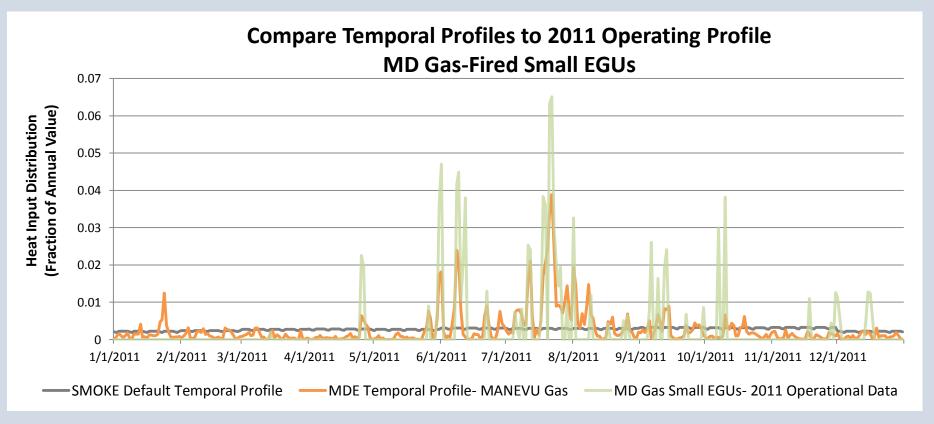
## Extra Slides

### Small Electric Generating Units (EGUs)(<25 MW)

#### SMOKE processing of small EGUs (<25 MW): is the model getting peak day emissions right?

- Annual emissions are known
- Typically operate for limited time periods:
  - HEDD periods (aka peak days)
  - When larger units are offline for maintenance
  - When necessary to ensure grid reliability

## Large units' operating profiles developed from hourly CEMS data, but what about the smaller units – those without CEMS?


- Annual emissions known
- Temporal profiles used to distribute emissions to the hour

#### MDE developed more realistic temporal profiles for coal, oil, and gas-fired EGUs < 25 MW.

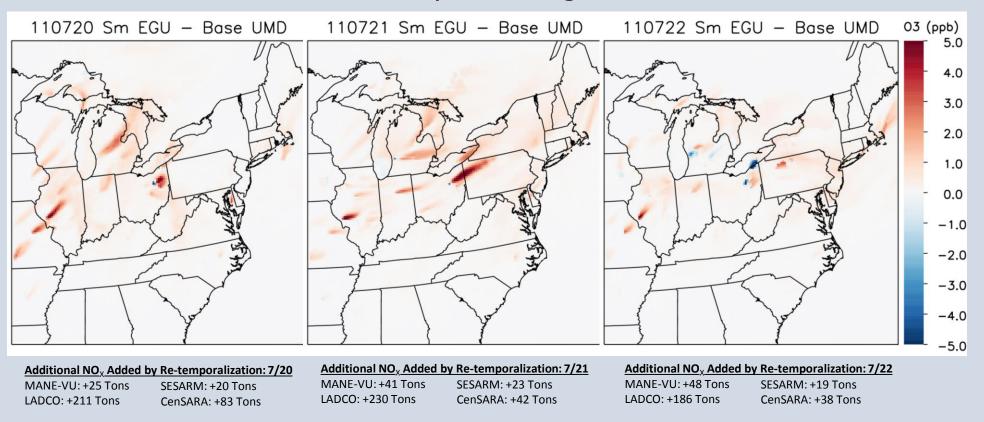
Profiles for these units should show limited annual operation, but high peak day operation

### Temporal Profiles for Small EGUs (<25 MW)

- Not adding additional emissions to the inventory simply changing the hourly distribution of annual emissions
- Default temporal profiles smear emissions fairly evenly throughout the year
- MDE's new temporal profiles allocate emissions based on CAMD data from peaking units
  - MDE also collected 2011 operating data from MD gas-fired small EGUs. New temporal profile closely matches actual
    operating profile.



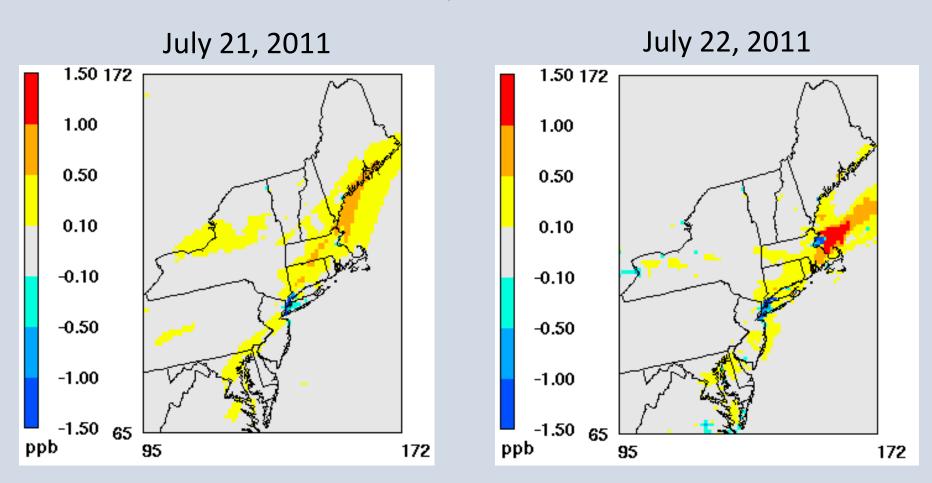
### Emissions Estimates for BUGs


### NO<sub>X</sub> Emissions in Tons/Day (or Tons/"Event")

| Region | Low Bound | High Bound |
|--------|-----------|------------|
| ISO-NE | 8         | 32         |
| NY-ISO | 7         | 30         |
| PJM    | 7         | 29         |

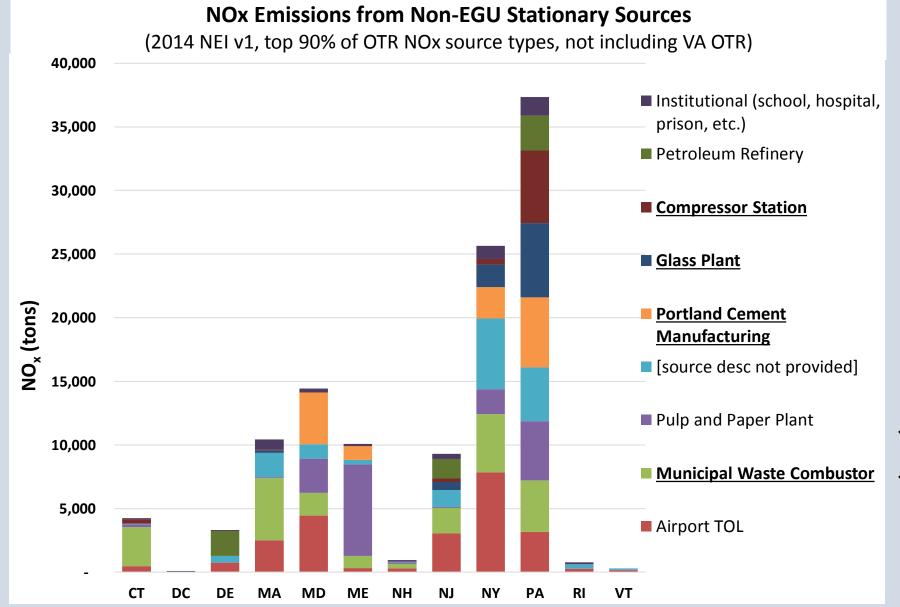


### Ozone Impact of Small EGUs (<25 MW)


## July 20 – 22, 2011 Event Period Preliminary Modeling Results



- Small EGU units can have an impact of up to 5 ppb in some areas on HEDDs.
- On non-HEDDs impact of small EGU units is insignificant.


### Ozone Impact of BUGs

Difference in Daily Maximum 8-hour Ozone 2011 Base w/ BUGs minus 2011 Base



Thanks to NYSDEC for performing the SMOKE and CMAQ processing

# RACT Workgroup Charge: Develop emission rates / ranges determined to be RACT for significant $NO_x$ & VOC source categories in OTC states



#### NO<sub>X</sub> RACT Whitepaper

8 (non-EGU) source categories

#### **ICI Boilers**

Stationary Gas (Combustion) Turbines

**Stationary Reciprocating Engines** 

**Hot Mix Asphalt Production Plants** 

**Glass Manufacturing Plants** 

**Cement Manufacturing Plants** 

Nat Gas Compressor Stations

**Municipal Waste Combustors** 

- ✓ First Draft posted on OTC website
- ✓ Will convey Final Draft to EPA for use in Guidance